7 research outputs found

    Altered brain connectivity in hyperkinetic movement disorders:A review of resting-state fMRI

    Get PDF
    BACKGROUND: Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES: Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS: A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS: Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION: Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes

    Multi-centre classification of functional neurological disorders based on resting-state functional connectivity.

    Get PDF
    BACKGROUND Patients suffering from functional neurological disorder (FND) experience disabling neurological symptoms not caused by an underlying classical neurological disease (such as stroke or multiple sclerosis). The diagnosis is made based on reliable positive clinical signs, but clinicians often require additional time- and cost consuming medical tests and examinations. Resting-state functional connectivity (RS FC) showed its potential as an imaging-based adjunctive biomarker to help distinguish patients from healthy controls and could represent a "rule-in" procedure to assist in the diagnostic process. However, the use of RS FC depends on its applicability in a multi-centre setting, which is particularly susceptible to inter-scanner variability. The aim of this study was to test the robustness of a classification approach based on RS FC in a multi-centre setting. METHODS This study aimed to distinguish 86 FND patients from 86 healthy controls acquired in four different centres using a multivariate machine learning approach based on whole-brain resting-state functional connectivity. First, previously published results were replicated in each centre individually (intra-centre cross-validation) and its robustness across inter-scanner variability was assessed by pooling all the data (pooled cross-validation). Second, we evaluated the generalizability of the method by using data from each centre once as a test set, and the data from the remaining centres as a training set (inter-centre cross-validation). RESULTS FND patients were successfully distinguished from healthy controls in the replication step (accuracy of 74%) as well as in each individual additional centre (accuracies of 73%, 71% and 70%). The pooled cross validation confirmed that the classifier was robust with an accuracy of 72%. The results survived post-hoc adjustment for anxiety, depression, psychotropic medication intake, and symptom severity. The most discriminant features involved the angular- and supramarginal gyri, sensorimotor cortex, cingular- and insular cortex, and hippocampal regions. The inter-centre validation step did not exceed chance level (accuracy below 50%). CONCLUSIONS The results demonstrate the applicability of RS FC to correctly distinguish FND patients from healthy controls in different centres and its robustness against inter-scanner variability. In order to generalize its use across different centres and aim for clinical application, future studies should work towards optimization of acquisition parameters and include neurological and psychiatric control groups presenting with similar symptoms

    [18F]FDG PET in conditions associated with hyperkinetic movement disorders and ataxia:a systematic review

    Get PDF
    PURPOSE: To give a comprehensive literature overview of alterations in regional cerebral glucose metabolism, measured using [18F]FDG PET, in conditions associated with hyperkinetic movement disorders and ataxia. In addition, correlations between glucose metabolism and clinical variables as well as the effect of treatment on glucose metabolism are discussed.METHODS: A systematic literature search was performed according to PRISMA guidelines. Studies concerning tremors, tics, dystonia, ataxia, chorea, myoclonus, functional movement disorders, or mixed movement disorders due to autoimmune or metabolic aetiologies were eligible for inclusion. A PubMed search was performed up to November 2021.RESULTS: Of 1240 studies retrieved in the original search, 104 articles were included. Most articles concerned patients with chorea (n = 27), followed by ataxia (n = 25), dystonia (n = 20), tremor (n = 8), metabolic disease (n = 7), myoclonus (n = 6), tics (n = 6), and autoimmune disorders (n = 5). No papers on functional movement disorders were included. Altered glucose metabolism was detected in various brain regions in all movement disorders, with dystonia-related hypermetabolism of the lentiform nuclei and both hyper- and hypometabolism of the cerebellum; pronounced cerebellar hypometabolism in ataxia; and striatal hypometabolism in chorea (dominated by Huntington disease). Correlations between clinical characteristics and glucose metabolism were often described. [18F]FDG PET-showed normalization of metabolic alterations after treatment in tremors, ataxia, and chorea.CONCLUSION: In all conditions with hyperkinetic movement disorders, hypo- or hypermetabolism was found in multiple, partly overlapping brain regions, and clinical characteristics often correlated with glucose metabolism. For some movement disorders, [18F]FDG PET metabolic changes reflected the effect of treatment.</p

    The chronnectome as a model for Charcot's 'dynamic lesion' in functional movement disorders

    Get PDF
    This exploratory study set out to investigate dynamic functional connectivity (dFC) in patients with jerky and tremulous functional movement disorders (JT-FMD). The focus in this work is on dynamic brain states, which represent distinct dFC patterns that reoccur in time and across subjects. Resting-state fMRI data were collected from 17 patients with JT-FMD and 17 healthy controls (HC). Symptom severity was measured using the Clinical Global Impression-Severity scale. Depression and anxiety were measured using the Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI), respectively. Independent component analysis was used to extract functional brain components. After computing dFC, dynamic brain states were determined for every subject using k-means clustering. Compared to HC, patients with JT-FMD spent more time in a state that was characterized predominantly by increasing medial prefrontal, and decreasing posterior midline connectivity over time. They also tended to visit this state more frequently. In addition, patients with JT-FMD transitioned significantly more often between different states compared to HC, and incorporated a state with decreasing medial prefrontal, and increasing posterior midline connectivity in their attractor, i.e., the cyclic patterns of state transitions. Altogether, this is the first study that demonstrates altered functional brain network dynamics in JT-FMD that may support concepts of increased self-reflective processes and impaired sense of agency as driving factors in FMD

    Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI

    No full text
    Background: Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. Objectives: Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. Methods: A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. Results: Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. Conclusion: Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes

    Cognitive biases, environmental, patient and personal factors associated with critical care decision making:A scoping review

    Get PDF
    Purpose: Cognitive biases and factors affecting decision making in critical care can potentially lead to life threatening errors. We aimed to examine the existing evidence on the influence of cognitive biases and factors on decision making in critical care. Materials and methods: We conducted a scoping review by searching MEDLINE for articles from 2004 to November 2020. We included studies conducted in physicians that described cognitive biases or factors associated with decision making. During the study process we decided on the method to summarize the evidence, and based on the obtained studies a descriptive summary of findings was the best fit. Results: Thirty heterogenous studies were included. Four main biases or factors were observed, e.g. cognitive biases, personal factors, environmental factors, and patient factors. Six (20%) studies reported biases associated with decision making comprising omission-, status quo-, implicit-, explicit-, outcome-, and overconfidence bias. Nineteen (63%) studies described personal factors, twenty-two (73%) studies described environmental factors, and sixteen (53%) studies described patient factors. Conclusions: The current evidence on cognitive biases and factors is heterogenous, but shows they influence clinical decision. Future studies should investigate the prevalence of cognitive biases and factors in clinical practice and their impact on clinical outcomes. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/)

    Altered Posterior Midline Activity in Patients with Jerky and Tremulous Functional Movement Disorders

    No full text
    Objective: To explore changes in resting-state networks in patients with jerky and tremulous functional movement disorders (JT-FMD). Methods: Resting-state functional magnetic resonance imaging data from seventeen patients with JT-FMD and seventeen age-, sex-, and education-matched healthy controls (HC) were investigated. Independent component analysis was used to examine the central executive network (CEN), salience network, and default mode network (DMN). Frequency distribution of network signal fluctuations and intra- and internetwork functional connectivity were investigated. Symptom severity was measured using the Clinical Global Impression-Severity scale. Beck Depression Inventory and Beck Anxiety Inventory scores were collected to measure depression and anxiety in FMD, respectively. Results: Compared with HC, patients with JT-FMD had significantly decreased power of lower range (0.01-0.10 Hz) frequency fluctuations in a precuneus and posterior cingulate cortex component of the DMN and in the dorsal attention network (DAN) component of the CEN (false discovery rate-corrected p < 0.05). No significant group differences were found for intra- and internetwork functional connectivity. In patients with JT-FMD, symptom severity was not significantly correlated with network measures. Depression scores were weakly correlated with intranetwork functional connectivity in the medial prefrontal cortex, while anxiety was not found to be related to network connectivity. Conclusions: Given the changes in the posterodorsal components of the DMN and DAN, we postulate that the JT-FMD-related functional alterations found in these regions could provide support for the concept that particularly attentional dysregulation is a fundamental disturbance in these patients. In this study, we explored static brain network functional connectivity in patients with jerky and tremulous functional movement disorders (JT-FMD) and healthy controls. We studied network functioning by analyzing functional connectivity measures, and also time course frequency spectra, which is novel compared with previous studies. We discovered aberrations in the frequency distribution of a posterior component of the default mode network (precuneus/posterior cingulate) and the dorsal attention network in patients with JT-FMD relative to controls. Conclusively, our findings could provide support for impaired attentional control as a fundamental disturbance in JT-FMD and contribute to the growing conceptualization of this disorder
    corecore